

Chiara Manzini
Aerospace Engineer

Bachelor Degree:
 Aerospace Engineering
 Politecnico di Milano

Master Degree:

 Systems and control
 (Aerospace Engineering)
 ISAE-Supaero

High interest in Biomedical world

Biomedical Engineer

Bachelor Degree:
 Biomedical Engineering
 Politecnico di Torino

Master Degree:

 Biomechanics and Biomaterials
 (Biomedical Engineering)
 Politecnico di Milano

High interest in Aerospace world

Context State of the art Objectives Outline Experiment set-up 5 **Experiment process**

6 Mass and volumes

7 Costs and risk analysis

Outline

Next steps

for tho

Context

Context

Context

17,9 million

people die each day for Cardiovascular disease, an estimated 31% worldwide

300.000

surgical heart valve replacement performed worldwide annually

850.000

expected demand for interventions in 2050

Higher calcium concentration

Higher calcium concentration

Lower veins and arteries stiffness

Higher calcium concentration

Lower veins and arteries stiffness

Hypovolemia and haematocrit increase

Higher calcium concentration

Lower veins and arteries stiffness

Hypovolemia and haematocrit increase

Blood shift

Higher calcium concentration

Lower veins and arteries stiffness

Hypovolemia and haematocrit increase

Blood shift

Stroke volume reduction

Higher calcium concentration

Lower veins and arteries stiffness

Hypovolemia and haematocrit increase

Blood shift

Stroke volume reduction

Objectives

Basal

Objectives

Basal

Calcification

Objectives

Basal

Calcification

LBNP

Experiment set-up

Experiment set-up

Experiment set-up

Experiment process

Configuration

Experiment process

Configuration

Acquisition

Experiment process

Configuration

Acquisition

Transmission

Mass and volume

Component	Mass [g]	Volume [mm³]
Pump	400	34 x 37 x 64
High resolution camera	300	64 x 64 x 66
Pinch solenoid valve	250	61 x 42 x 99
pH sensor	50	12 (d) x 120

Total estimated encumbrance: 3U x 4U

Costs

Sub-section	Costs (€)	Critical element
Sensors	2.100	Flow meter
Mock-up system	5.500	Pump and Bioprosthesis
Data acquisition	7.100	High speed camera
Launch	85.000	Weight (≈ 1.5 kg)

Total estimated cost: 99.700 €

Weight of each subsystem (%)

Costs

Sub-section	Costs (€)	Critical element
Sensors	2.100	Flow meter
Mock-up system	5.500	Pump and Bioprosthesis
Data acquisition	7.100	High speed camera
Launch	85.000	Weight (≈ 1.5 kg)

Total estimated cost: 99.700 €

Weight of each subsystem (%)

Breaking or failure of components

- Breaking or failure of components
- Accuracy of calibration of the sensors

- Breaking or failure of components
- Accuracy of calibration of the sensors
- Bad illumination

- Breaking or failure of components
- Accuracy of calibration of the sensors
- Bad illumination
- Supersaturation of the fluid

Next steps

Next steps

Detailed design and computer simulations

System construction and tests

Data analysis

Chiara Manzini Aerospace Engineer

Anisia Lauditi Biomedical Engineer

Thank you for the attention!

Q & A

Chiara Manzini
Aerospace Engineer

Anisia Lauditi Biomedical Engineer