Project of Micro-Satellite Constellation for Earthquake Precursor Study

Masashi Kamogawa (Tokyo Gakugei University), Kohei Tanaka, and Kiichiro DeLuca

Pre-EQ Sat Team:

M. Kamogawa , K. Tanaka, K. Miyata, K. Mochizuki , K. Nakazawa, H. Kayaba, J. Takisawa, K. DeLuca, Y. Kakinami, and S. Shimazaki

Special thanks: Dr. N. Yoshida (MELCO), Dr. J.-J. Berthelier (LATMOS/CNRS), Dr. T. Kodama (EORC/ JAXA), Mr. R. Misonoh (Tokyo Gakugei University)

Mitigation of Earthquake Disasters

Prevention

O Well-developed O Practical use

X Underneath strong earthquake X Tsunami generated near the coast. Prediction / Forecast

Short-term Prediction (days - hours in advance)

Holy grail of earth science!

Short-term Earthquake Prediction

Prediction

Where? When? How large?

Precursor is needed !

Reported Precursors

Uyeda, Nagao & Kamogawa (2011)

- Animal behavior?
- Radon emission?
- Ground water?
- Geo-electric current?
- Ionospheric disturbance?

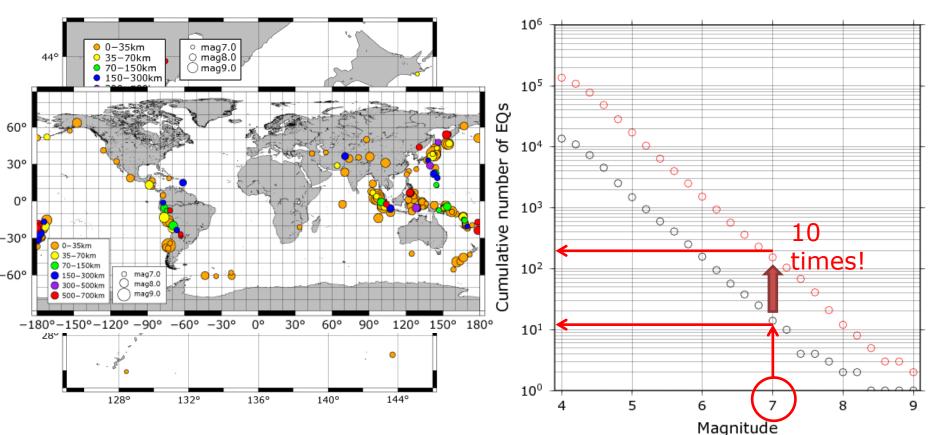
Some of them may be scientifically real, but it is difficult to statistically prove it.

For precursor science ...

 Physical mechanism (Deductive)
 So far, the mechanism of any precursor has not been found.

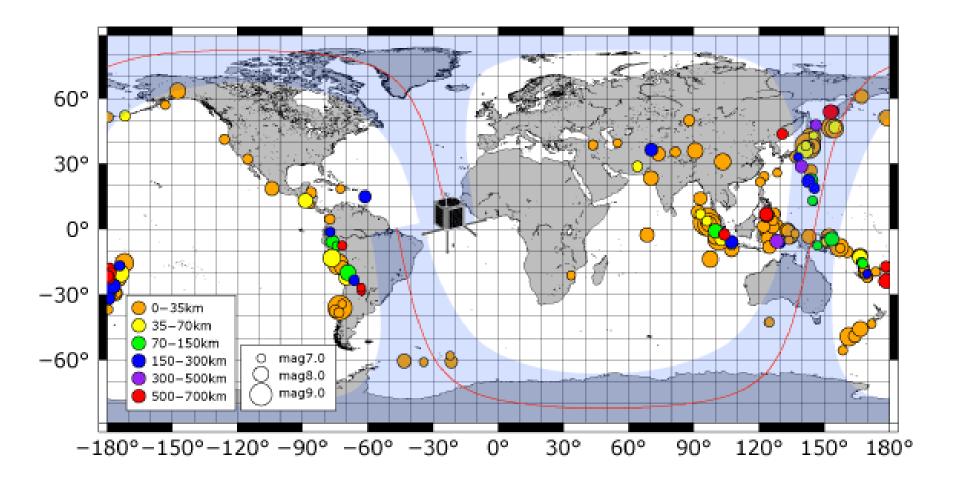
Statistical method (Inductive)

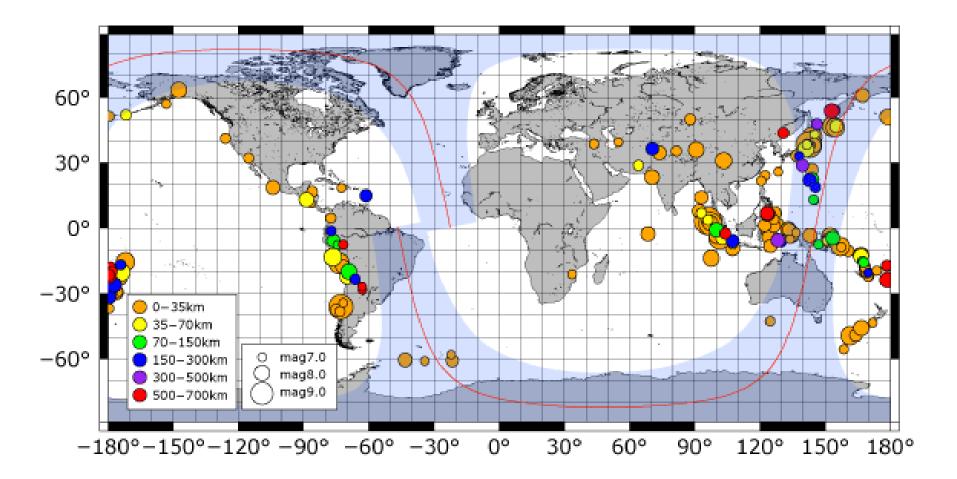
Epidemiology-like methodology Probabilistic earthquake forecast is possible.


Causation between EQ and Precursors

- Learning from epidemiology (Hill, 1965).

- A number of events is needed for statistics.
- Earthquake -> Precursor
- No earthquake -> No precursor
- Large (M>7) earthquake -> Large precursor


The number of large earthquakes is small. - Gutenberg Richter Law


(USGS, 2000-2011)

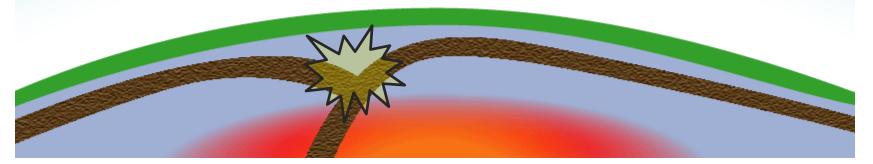
We focus on world earthquakes.

Satellite observation is useful!

Before Earthquake

Plausible Ionospheric Precursors (Kamogawa (2006) and later reviews)

1) Decrease of Intensity of VLF electromagnetic waves


44

magnetic field line h

Nemec et al. (2008)

Ionosphere

 $M \ge 5$ earthquakes

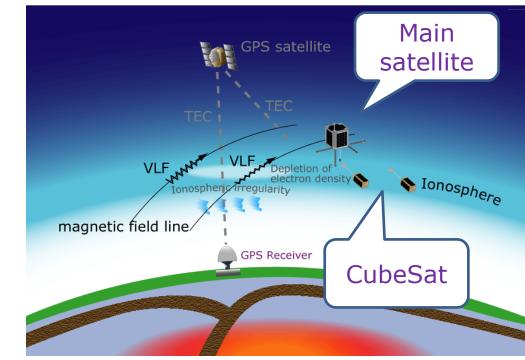
Plausible Ionospheric Precursors

(Kamogawa (2006) and later reviews)

2) Decrease of ionospheric electron density Liu et al. (2006)

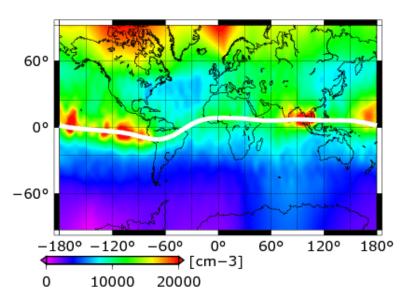
> M≥5 300km M≥7 3000km?

Ionosphere


On-orbit Observations

1) Electric field of VLF electromagnetic waves

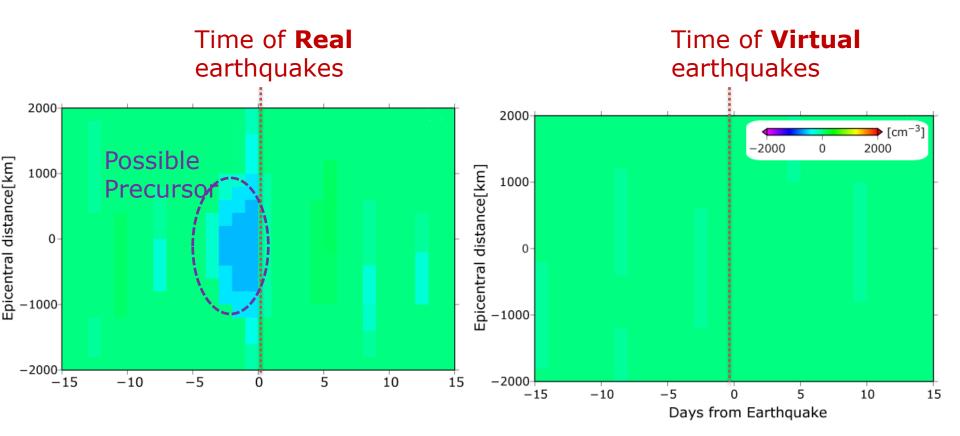
[EFM] Electric field measurement with Dipole antennas [MFM] Magnetic field measurement


2) Electron density

[EDTM] Electron density and temperature with Langmuir probe [TEC] Total electron content with GPS receiver

How to identify a precursor?

We should know standard ionosphere . So, we construct standard ionospheric model.


Model depends on..

Local time Latitude Longitude Altitude Solar flux Geomagnetic activity etc....

Example of electron density map during geomagnetically quite period

Precise model requires one solar cycle (11 years) observation.

Accumulate residual values between model and observed data.

Note: This is a conceptual view.

Mission Objectives

- Investigate two plausible ionospheric precursors
- Observe 100 M≥7 earthquakes
- Sustain 11-year observation
- Satellite successive operation and constellation

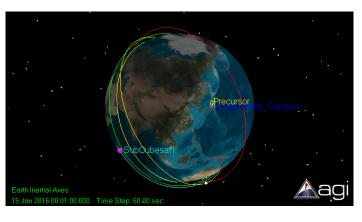
Orbit and Constellation Design

Observation:

- Continuous operation for one solar cycle
- Capture both reduced parameter and time dependent dynamics of ionosphere

Operation:

Exploit high-latitude GS for frequent downlink

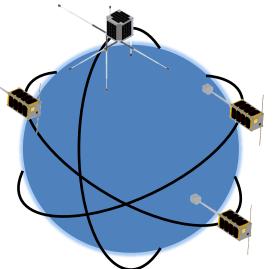

both SSO and non-SSO

assets, in a sustained

constellation

high-inclination for

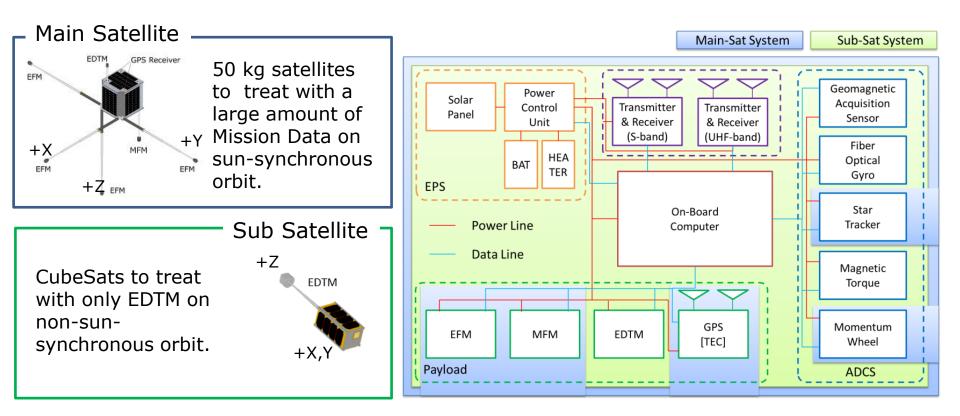
Main Satellite



1 SSO Main Satellite

+ non-SSO CubeSats

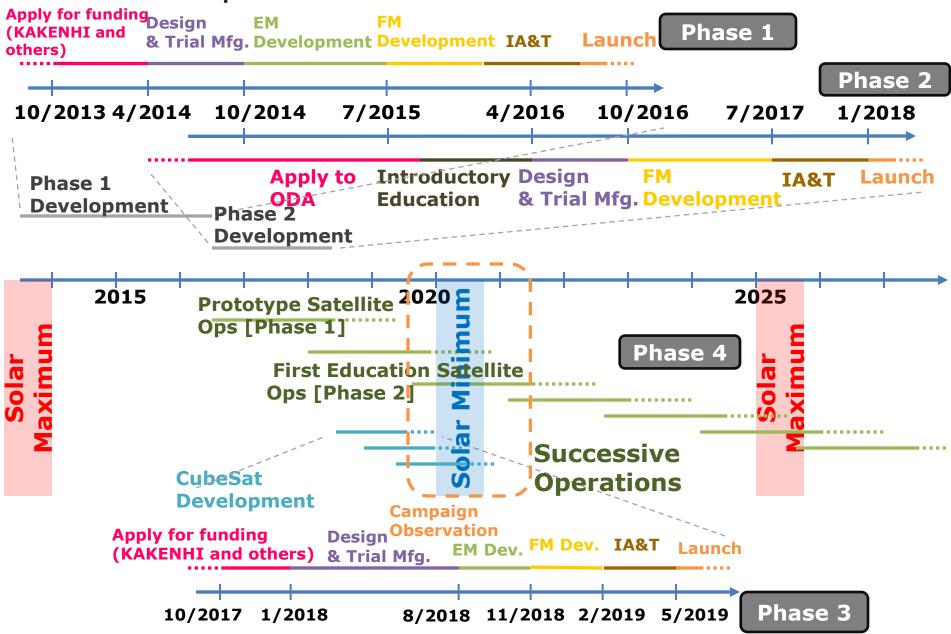
@ 2 year replenishment


cycle

Flight Segment Description

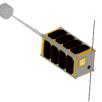
Design Concept

- 1. To use mature technology except extension boom system
- 2. Main-satellite and Sub-satellite are composed with similar architecture
- 3. Power Interface and Communications Interface are common for each components in order to be able to upgrade components on its own


Candidate: Extension Boom System

IEM system has heritage in small size, so it is currently under consideration for selection.

	Inflatable Exte	ension	Mast (IEM)	Y Tel	Telescopic Extension Mast (TEM)			Deployment Bo	om (DB)	
size	Δ				0		\bigcirc			
weight		0			Δ			Δ		
heritage		\bigcirc			Δ			Δ		
		SIMPLE	This Satellite	┼─	Parameter	r	Parameter			
	Number of booms	1	4		Material	Aluminum		Material	Aluminum	
	Length[mm]	1500	1500		Extension Length[mm]	1410		Extension Length[mm]	1500	,
spec	Diameter[mm]	120	40		Side Length[mm]	30		Side Length[mm]	30	, I
	Mass[kg]	0.389	TBD		Mass[kg]	0.68x4=2.72		Mass[kg]	0.6x4=2.4	,
	Storage size[mm]	210x268 x468	100x115 x210		Storage size[mm]	30x30x500		Storage size[mm]	20x50x500	
				↓			 			\neg
image	Reference : http://iss.jaxa.jp/kiboexp/news/120821_s			Spring Extension Outside Boom Middle Boom Inside Boom Guide Rail mpl		boom (stov ← 0.5r ↓ h constra cabl	hinge and latch mechanism [3]	boom (deployed)	→ 	
	e.html			一						


Project Schedule

Main Satellite Development

Cost Estimate & Funding

	Main Satellite (FY14 KJPY)	CubeSat (FY14 KJPY)
Total	150,000	30,000
Mission Payloads	20,000	12,000
Satellite Bus	70,000	6,000
IA&T	10,000	4,000
Ground Systems	5,000	2,000
Project Management & SE	45,000	6,000

Phased Funding Approach

Funding Sources

Grant-in-Aid for Scientific Research (KAKENHI)

- Up to 300 M JPY expected
- Funded Tohoku University's
 SPRITE-SAT

Official Development Assistance (ODA)

- First case: 40 B JPY to Vietnam
- Especially for countries
 participating in UNISEC's
 CanSat Leadership Training

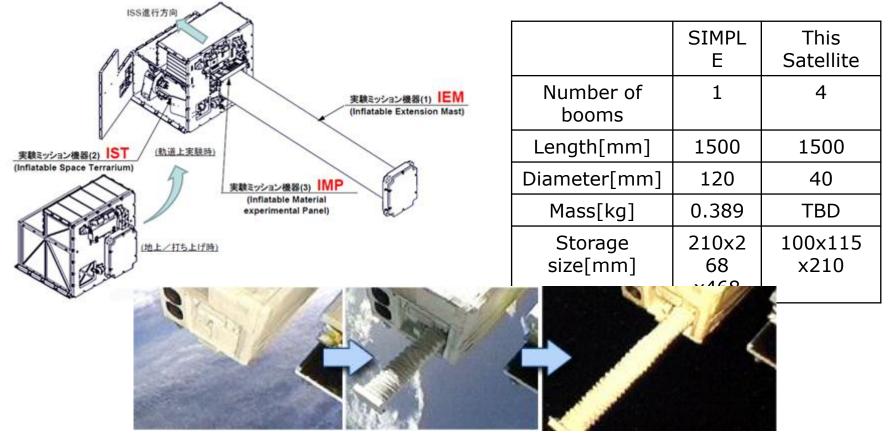
Program

Proposal will be submitted to JSPS (KAKENHI) **this month** by Prof. Kamogawa for next fiscal year funding.

Funding Sources

- International Microsatellite Network for EQ Prediction
 - Following DMC's successful model
 - Leverage space development funding across the world
 - Members "buy in" to the EQ satellite network...

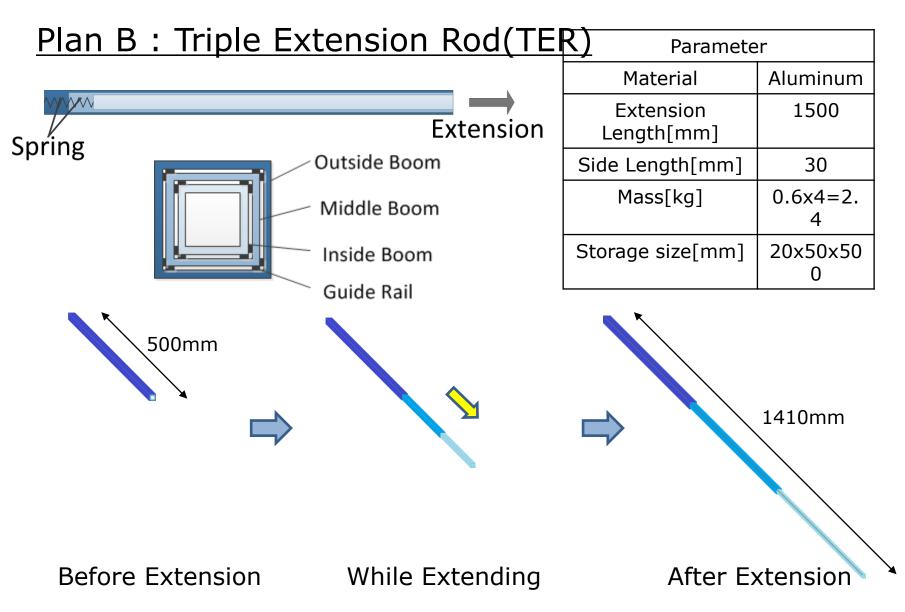
Join our Ponzi scheme (Nezumi-kou)?


Back slide

Trade off: Extension boom system

	Inflatable Extension Mast (IEM)	Inflatable Extension Mast (IEM)	Spring Loaded Mast (SLM)
pro	 This technology was developed originally in Japan and have high hopes for the future This extension way is used and validated in JEM, so there is high reliability. We hold promise from development team. 	 Easy to stow Can decrease the opening shock with calibrating the damper The boom is rigid 	 Don't need an active extension mechanism Spring extensions are well used as a space technology
con	 Too big to use for 50x50x50 cm size satellites Weak for disturbance 	 Need a boom extension control mechanism take an ingenuity in fear of failing to deploy 	 High cost Too big size

Methods of Extension Booms

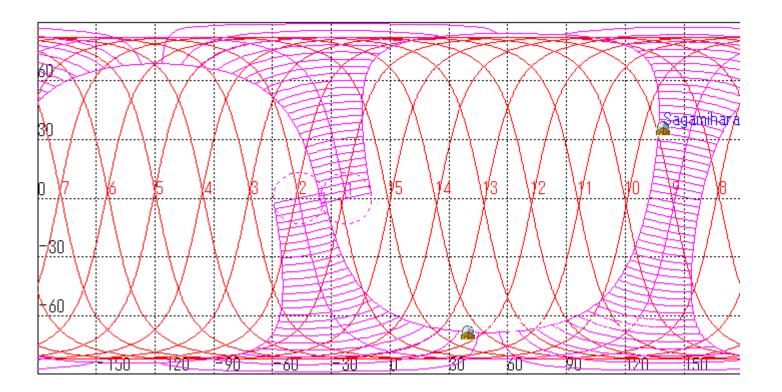

Plan A : Inflatable Extension Mast (IEM)

The appearance of extension

Reference: http://iss.jaxa.jp/kiboexp/news/120821_simple.html

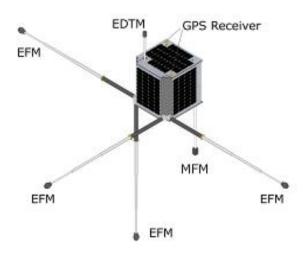
Methods of Extension Booms

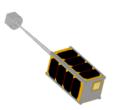
Mission Orbit Requirement

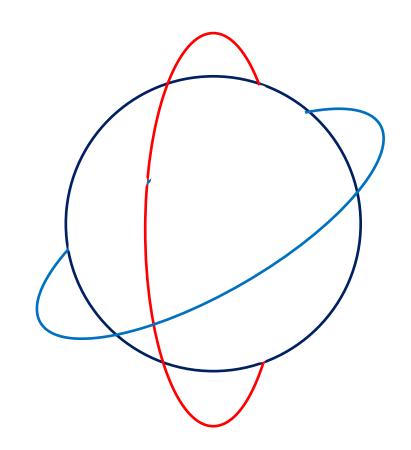

<u>~Main Satellite Requirement~</u>

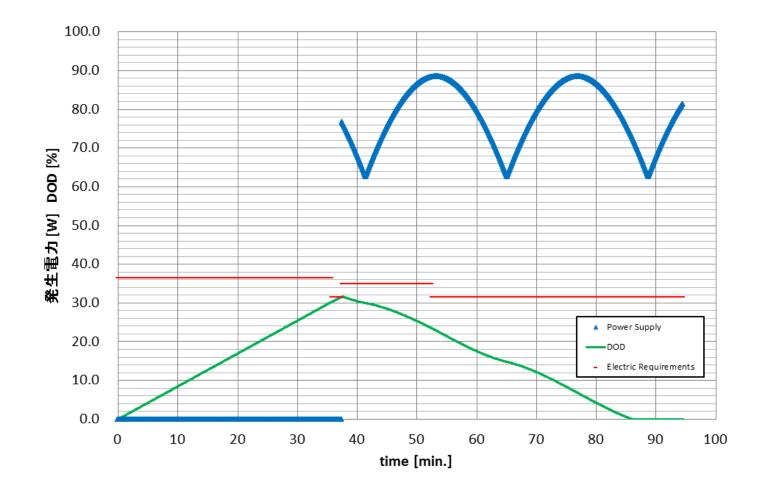
- Mission Observation Requirement (EFM MFM TEC) Periodic/Quasi-static measurement Area
 - : 1500km radius from the epicenter near the equator
- Large amounts of mission data Polar Region Ground Station
- Piggy-back Launch Opportunities
 - -> Sun Synchronous sub-recurrent orbit

~Sub Satellite Requirement~

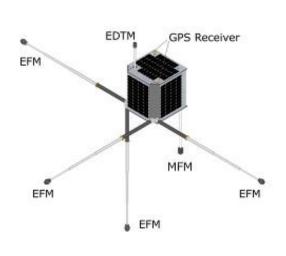

 Mission Observation Requirement (EDTM) Temporal and Spatial Variability measurement – ->Non-Sun-Synchronous Orbit


Main Satellite Orbit

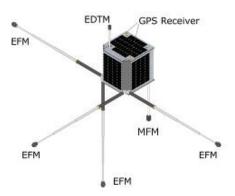



Sun Synchronous sub-recurrent orbit LTDN: 1030 -> Orbital Period : 90 min / Path Interval 22.5 deg

Constellation with two types satellite

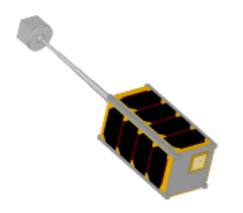


Main satellite



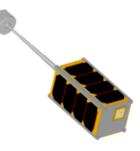
Main-satellite to treat with a large amount of Mission Data with sun-

synchronous orbit.


Size	< 50 x 50 x 50 cm
Mass	< 50 kg
	$EFM \times 4$
Mission Davis da	MFM \times 1
Mission Payloads	EDTM \times 1
	TEC \times 1
	S-band Transmitter & Receiver / Antenna × 2
Communication	(HK/Mission Downlink)300kbps (receiver) 4kbps
	UHF-band Transmitter / Antenna × 4
	(Mission Downlink) 9600 bps
	Max Generation > 90 W
	Solar Array: Indium Tin Oxide cell
	Body Mount × 6
Power	Max Consumption > 40W
	Li-ion Battery: 8 series × 2 parallel
	$2.5 \sim 4.2 \times 8 = 20 \sim 33.6 \text{ V}$
	$2.9 \times 2 = 5.8 \text{ Ah}$
Orbit Determination Accuracy	< 1 km
Attitude Determination Accuracy	< 0.1 deg.

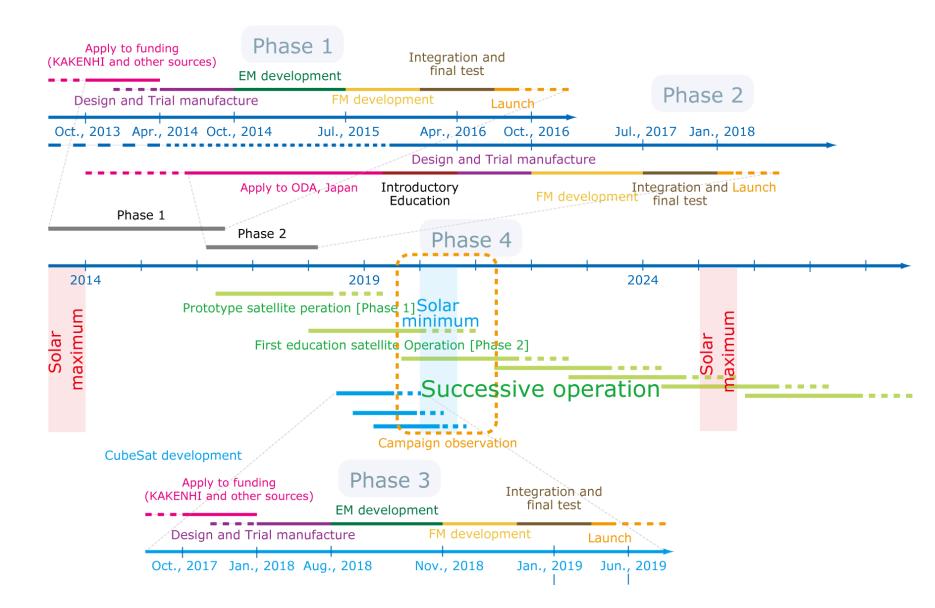
System diagram

	ellite's power an			Components	Qty.	Power [W]	Mass [kg]
()Bus and	payload system	for Main-s	atellite	EFM	4	4	2.4
	payload system		accince	MFM	1	2	0.8
		、	Mission	EDTM	1	3	0.8
Solar Power	Transmitter	Geomagnetic Acquisition		TEC	1	see GPS- R	see GPS- R
Panel Unit	& Receiver & Receiver	Sensor	DH	OBC	1	5	2.5
	(S-band) (UHF-band)	Fiber	СОМ	U-Tx	1	4	0.06
BAT HEA		Optical	COM	S-TRx	1	3.5	0.7
BAT TER		Gyro		MW	1	0.7	1
(EPS				GPS-R	1	1.6	0.06
	On-Board	Star		GPS-ANT	1	0.3	0.06
Power Line	Computer	Tracker	AOCS	MTQ	3	1.05	1.5
—— Data Line				STT	2	4	1
Data Line		Magnetic		GAS	1	0.25	0.25
		Torque		FOG	1	3	2.5
				PCU	1	3	1.5
	GPS	Momentum	Power	SAP	6		0.6
EFM MFM	EDTM [TEC]	Wheel		BAT	1		1.5
Payload		ADCS		THERMAL (Heater)	2	4	1
×	~ ~ ~ ~	'	STR /THRM	STRUCTUR E	1	N/A	17
				Boom (long)	4	N/A	2.4
				Boom (short)	2	N/A	0.8
				Total		39.4	38.43


Sub satellite

Sub-satellite to treat with only EDTM with nonsun-synchronous orbit.

Size	< 10 x 10 x 20 cm
Mass	< 3 kg
Mission Payload	EDTM: × 1
Communication	S-band Tx & Rx / Antenna × 2
	Max Generation > 3.4 W
	Solar Array: Indium Tin Oxide cell
	Body Mount \times 5
Power	Max Consumption > 2.9W
	Li-ion Battery: 1 series × 2 parallel
	$2.5 \sim 4.2 \times 1 = 2.5 \sim 4.2 \text{ V}$
	$2.9 \times 2 = 5.8 \text{ Ah}$
Control Method	Gravity-gradient stability


System diagram

(\rightarrow) Main satellite's power and mass b		Components	Qty.	Power [W]	Mass [kg]
(\downarrow) Bus and payload system for Main-	satellite	EDTM	1	3	0.8
	DII	ODC	1	1	0.1

		DH	OBC	1	1	0.1
	Geomagnetic	СОМ	U-Tx	1	1	0.06
Solar Control Transmitter Transmitter	Acquisition	COM	S-TRx	1	3.5	0.3
Panel Unit & Receiver & Receiver	Sensor		MTQ	3	0.35	0.3
(UHF-band)	Fiber	AOCS	GAS	1	0.25	0.1
BAT HEA	Optical		SS	3	0.2	0.1
EPS	Gyro		PCU	1	0.5	0.1
`'		Power	SAP	6		0.4
Power Line On-Board			BAT	1		0.2
		STR	THERMAL (Heater)	2	2	0.1
— Data Line	Magnetic	/THRM	STRUCTURE	1	N/A	0.6
	Torque		Boom	1	N/A	0.4
			Total		10.8	3.46
MFM GPS						
Payload	ADCS					

Schedule and budget

Mission requirement

1. Observe ionospheric precursors continuously during the solar cycle

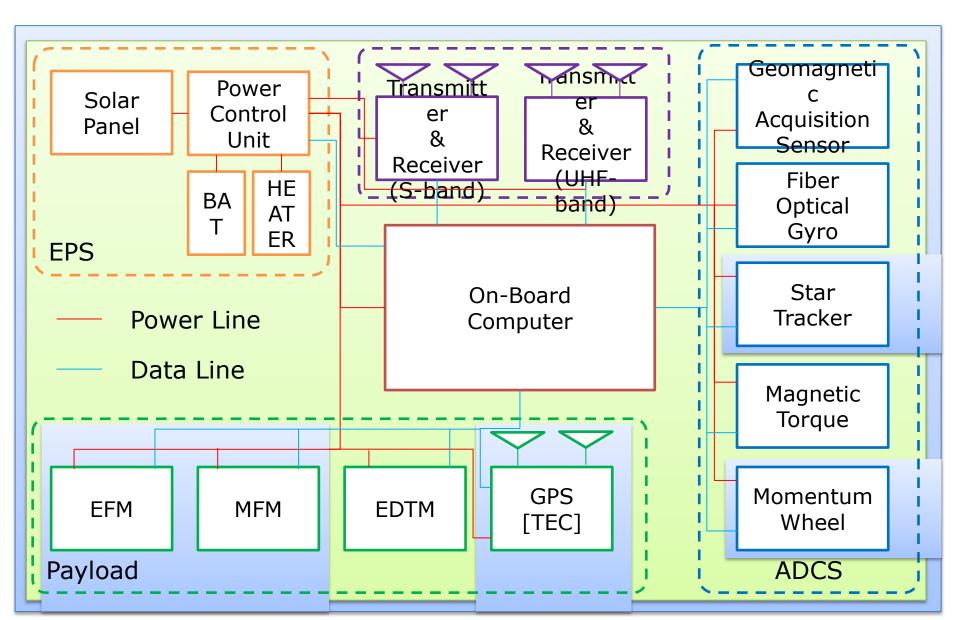
- 1. Observe whole day long
- 2. Launch on non-sun-synchronous orbit during solar minimum for a campaign o
- 2. Bus system satisfy Table1's requirements.

Table1. mission requirements

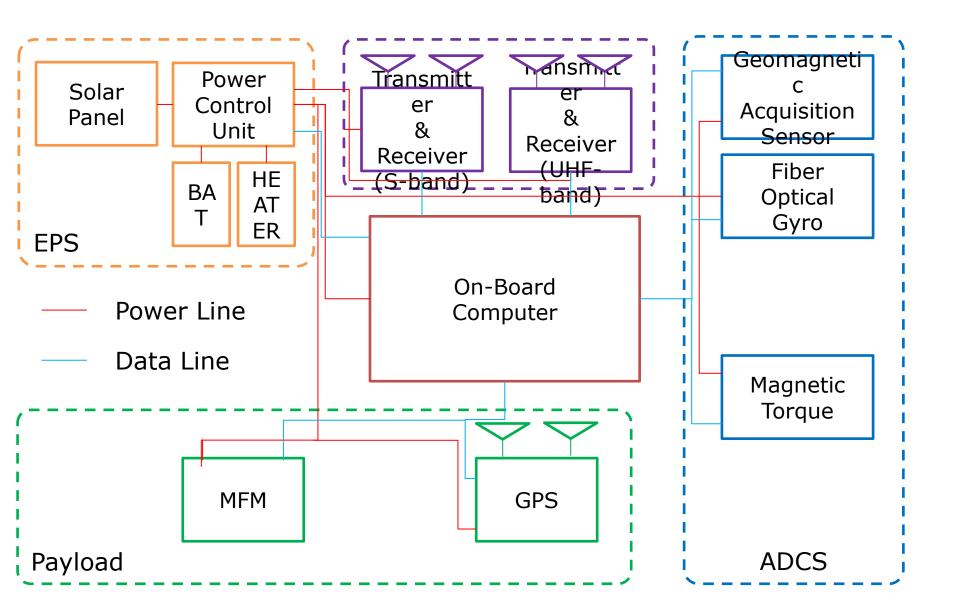
		D	ata size			
Payloads	Sampling rate	S-band	UHF	Power	Bus requirement	Weight
		Full data[/day]	Trend data [/90 min]			
EFM	1 Hz*	138.2 MB	216.0 kB	4.0 W	0.1 deg. of altitude determination accuracy	2.4 kg for 4 booms
MFM	1 Hz	0.5 MB	32.4 kB	2.0 W		0.8 kg
EDTM	1 Hz	0.7 MB	21.6 kB	3.0 W	-200V power dispatching for ion spattering	0.8 kg
TEC**	1 Hz	63.7 MB	N/A	1.6W	Dual frequency GPS signal reception	0.06 kg

Link design

(a) Syowa station, Antarctic


	Path	Duration	Duration
	[/Day]	[sec./path]	[Sec./Day]
Maximum	12.0	777	7981
Average	11.7	666	7675
Minimum	10.0	180	6323

(b) Tokyo, Japan


	Path	Duration	Duration
	[/Day]	[sec./path]	[Sec./Day]
Maximum	6.0	769	3429
Average	5.7	618	2977
Minimum	4.0	191	1893

	S-band downlink	S-band	UHF downlink	
		Command	Carrier	UTII' UUWIIIIIK
Frequency [GHz]	2263.6	2084.4		460
Transmitter power [dBW]	-6.99	1	0	-20.0
Transmit Antenna Gain [dBi]	2	35	.13	0
Line Loss [dB]	-5	-	1	-1
Transmit Antenna Pointing Loss [dB]	0	(C	0
Free Space Loss [dB]	-166.70	-16	6.16	-148.9
Atmosphere Absorption Loss[dB]	-0.5	-0.5		-0.5
Polarization Loss [dB]	0	0		0
Rain Fades [dB]	-0.61	-0.61		-0.12
Receive G/T [dB/K]	23.80	-45.45		2.32
Receive C/No [dBHz]	74.60	6	60	60.32
Modulation Type	BPSK	PCM-PSK-PM	PCM-PSK-PM	GMSK
Required Eb/N _O [dB]	6	10.34	N/A	3.2
Required S/No[dB]	N/A	N/A	10.00	N/A
Bit Rate [kbps]	300	4	4	9.6
Coding type	Reed Solomon	BCH	No Coding	Convolution
Hardware loss	-1.5	-1.5	-1.5	-1.5
Modulation Loss (1.0rad) [dB]	N/A	-1.5	-5.35	N/A
Margin [dB]	12.33	11.64	5.64	12.8

System Diagram

System Diagram

