

IRS-Sat: Integrated Rescue Service Satellite

Mohamed Ibrahim¹, Pauline Faure¹, Batsuren Amgalanbat¹, and Kevin Chou²

¹Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu, 804-8550 Fukuoka, Japan ²University of Southern California, 90089 Los Angeles, United States of America

The recent years have witnessed catastrophic natural disasters that went with thousands of human lives. We present an idea that would be used to provide a robust and secure satellite rescue system to guide in assessing the level and type of danger in Japan and Indonesia as faced during natural disasters by the habitants. It would also help the rescue troops to plan their logistics more efficiently and effectively. We call the satellite system, the Integrated Rescue Service Satellite (IRS-Sat) and the concept beyond it, is to develop a rescue based system that would enable its users to send messages before, during, and after disasters from their smart phones and/or special hand held units to the IRS-Sat satellite constellation via distributed communication nodes. IRS-Sat system is designed from 6 nano-satellites orbiting at an altitude of 600km with an inclination angle of 50.5°. Communication with the satellites constellation will take place through 4 ground stations where 2 stations act as main and 2 stations act as backup. The business feasibility study estimated the initial fixed cost at about USD 381.31M and the annual variable cost at USD 393.89M. The annual revenue is estimated to be USD 678.39M. These estimations show that the IRS-Sat project is viable and will reach its breakeven point approximately after1 year and 4 months within a total operating period of 5 years.

	Synch	Floods	Earthquaka	Volcano	Tsunami	High	Meduim	Low	Medical	Shelter	Energy	Node Index	Res	CRC
Danger Ty		/pe (1 – 8)		Dange	er Level (9	- 14)	Needed	Rescue ('	5 – 20)					

Fig. 4 Data Format of Packet sent from Node to Satellite

	Table 1 Initial Fixed Cost							
	Item	Level	Quantity	Cost [M USD]	Total cost [M USD]			
1	Ground Station	20 Mbps downlink ^a	4 ^b	0.5	2.0			
2	Satellite	Payload(9.6 kbps uplink) ^c	6 ^d	0.8	4.8			
3		Bus (high level)	6	4.0	24.0			
4	Software development	Smart phone application	1	0.1	0.1			
5	Launching	Coordinated orbit	6	4	24.0			
6	Node	Ruggedized design	326,409 ^e	0.001^{f}	326.41			
	TOTAL				381.31			

^aUplink speed: 1.2 kbytes/s; ^bone main and one backup ground stations in each country; ^cdetails in logistical feasibility section; ^dfrom orbit and coverage simulations; ^e36,449 nodes for Japan and 181,157 nodes for Indonesia plus half of this quantity as backups; ^fcost include the installation of the nodes

22 23

25

Fig. 6 Accumulated Revenue

Table 2 Annual Variable Cost									
	Item	Quantity	Cost [M USD]	Total Cost [M USD]					
1	Ground Stations operation and maintenance	4	0.4	1.60					
2	Node maintenance	326,409	0.0001/month/node	391.69					
3	Marketing			0.60 ^a					
	TOTAL			393.89					
aA	^a Around 10% of the total revenue								

Table 3 Annual Revenue									
	Item	Smartphone usersAnnual subscribers		Monthly fee [USD]	Annual Revenue [M USD]				
	Subscription in Japan	21,590,000ª	4,318,000	10	518.2				
1	Subscription in Indonesia	12,410,000 ^b	2,482,000	5	148.9				
	SW package in Japan	21,590,000 ^a	4,318,000	0.17	8.81				
2	SW package in Indonesia	12,410,000 ^b	2,482,000	0.08	2.48				
	TOTAL				678.39				
^a October 2011, 17% of Japanese had a smart phone; ^b estimate of number of									
Indonesians having a smart phone									

Fig. 5 Breakeven Analysis

	Table 4 Summary of System Specifications		Table 5 Risk Analysis					
			No Risk	La	Sb	APO ^c	Ad	Contingency Plan
	Communication newload: 0.6 khns (Madium)		1 Early failures due to technical difficulties during the satellites D development		2	Scope	Madium	Sub-contracting based on companies' competency level
Payload and Bus Level	Communication payload. 9.0 Kops (Medium)				5	Scope	Medium	Insurance on the satellites to re-build in case of failures
	Bus: 20 Mbps (High)		2 Service unavailability during disasters due to malfunctions	C	5	Quality	High	Backups for the nodes, ground stations, and satellites
			3 Service cost is high	C	5	Cost	High	Use price discrimination policy
	6 nano-satellites in the same coordinated LEO orbit at 50.5° inclination and 600 km altitude		4 Legal and Political constraints	C	4	Scope	Medium	Coordination with local governments and authorities
Number of Satellites and Orbit Coordination			5 Destruction of any of the ground segment components during disasters	D			Very high	Use ruggedized components
Orbit Coordination					5	Quality		Modular design for quick repair
								Insurance premiums for revitalization
Ground Stations	4 ground stations (1 main + 1 backup stations in each country)							Issuing common stocks in the securities market
	DNEPR rocket goes to 50.5° orbits compared to other rockets delta H2A		6 Securing the needed financial resources for building the whole system	D	4	Cost	High	Public-private partnership
Launch Rocket	Ariane, and VEGA.	Λ,						Insurance companies and banks as target investors
			^a L: likelihood, ^b S: severity, ^c APO: affected project objective, ^d Assessment					