

Paridhi - 6U Nanosatellite constellation mission for observation and study of the Van Allen Belt

Raahil Rana¹, Ashish Shinde², Anil Kumar Sahoo³, Karan Gupta⁴, Divyam Gupta⁵, Rahul Shukla⁶, Bharath Prajwal B.R.⁷

Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala – 695547, India

The Team

The Need:

Region of Intense Radiation

Significant obstacles to space exploration

Mysteries of Anti-matter

1. Study of South Atlantic Anomaly

- 2. Radiation Environment Analysis
- 3. Correlation Between Radiation And Antimatter
- 4. Space Exploration and Technological Implications

1. Study of South Atlantic Anomaly

2. Radiation Environment Analysis

- 3. Correlation Between Radiation And Antimatter
- 4. Space Exploration and Technological Implications

Measure:

- Radiation levels
- Energy Spectra
- Particle Fluxes

- 1. Study of South Atlantic Anomaly
- 2. Radiation Environment Analysis
- 3. Correlation Between Radiation And Antimatter
- 4. Space Exploration and Technological Implications

Understand interactions and dynamics in the belt

- 1. Study of South Atlantic Anomaly
- 2. Radiation Environment Analysis
- 3. Correlation Between Radiation And Antimatter
- 4. Space Exploration and Technological Implications

- Improve spacecraft design
- Radiation shielding
- Advanced materials

Structures:

Structures: Mass & Volume Budget

Subsystem	Components	Parts	Dimensions (mm x mm x mm)	Mass (g)		
	MagIS	Medium energy Unit	2U (Upper limit)	3000 – 4000		
	Dosimeter	piDOSE – DCD	30 cm^3	30 - 40		
Payload	Magnetometer	NMRM – Bn25o485	$70 - 90 \text{ cm}^3$	<85		
	RPA	Module	1.5 U (upper limit)	200		
ADCS	Reaction Wheel Star Tracker Magneto-torquer	CubeADCS 3 - Axis	90 * 96 * 57	506		
Communication	S – band antenna	SSA01 – Wide bandwidth S- band patch antenna	96.5 * 69.7 * 4.8	40		
	High data rate S – band transmitter	ISIS TXS	98.8 * 93.3 * 14.5	132		
SpaceMIC – PARIDHI						

Structures: Mass & Volume Budget

Subsystem	Components	Parts	Dimensions (mm x mm x mm)	Mass (g)
	FPGA	Actel RTAX – S	40 * 40 * 2	10 (min)
CDH	SD Card	Delkin Devices MB32FQQFZ – 42000 – 2	32 * 24 * 2.1	3
EPS	Battery Pack	ISIS iEPS	96 * 92 * 26.45	184 ± 5
	Solar Cells	45 cells		126
Structure	Al 6061	Body frame	100 * 200 * 300	3000
				8.2 kgs
		Total	4.51 U	[Excluding thermals and other panels]

- Robust radiation shielding strategy.
- Radiation shielding uses specific materials and calculated thicknesses to protect sensitive components.
- Charge Dissipation Coatings like LUNA XP are applied to dissipate the energy of charged particles, safeguarding electronic components.
- Multilayer Insulations (MLIs) maintain a stable thermal environment, addressing temperature variations in the satellite's orbit.

- Understand characteristics of charged particles
- Utilizes chamber under influence of magnetic field and silicon detector array to assess charged particle's momentum, charge, and energy.
- Major inspiration: NASA's twin Van Allen Probes
- Detects antiparticles using specific charge identification.

Magnetic Ion Spectrometer (MagIS)

- Uniform magnetic field deflects charged particles based on specific charge.
- Detector array matches energy, with lower-energy electrons striking lower-numbered pixels and higher-energy electrons reaching higher-numbered pixels.
- Detector thickness corresponds to the electron energy range it measures.
- Electron impact generates current pulses in the detector, digitized into pulse heights, proportional to energy.
- Magnetic spectrometer provides two measures: momentum selection and energy from pulse heights.
- Protons, with opposite charge, follow similar principles but require thicker silicon detectors.

Payload

1. Magnetic Ion Spectrometer (MagIS)

Magnetometer

- AMR: Relies on electrical resistivity changes with the angle between current and magnetization directions in ferromagnetic materials.
- Detects magnetic fields by observing resistivity changes as magnetization rotates under an external field.
- AMR response influenced by temperature
- Includes offset compensation circuitry to nullify AMR sensor offset voltage and enhance performance.

Common off the shelf NSS - magnetometer

NSS Magnetometer [COTS] https://www.cubesatshop.com/p roduct/nss-magnetometer/

1. Magnetic Ion Spectrometer (MagIS)

2. Magnetometer

Retarding Potential Analyser (RPA)

- Measures energy distribution of charged particles in a vacuum, like electrons or ions.
- It applies an electric potential to incoming particles and observes how it affects their kinetic energy.
- Particles with kinetic energy exceeding the retarding potential pass through, while those with lower energy are slowed or halted.
- RPA calculates current of particles passing through as a function of the retarding potential.
- Scanning retarding potential and measuring current allows construction of an energy distribution profile.

- 1. Magnetic Ion Spectrometer (MagIS)
- 2. Magnetometer
- 3. Retarding Potential Analyser (RPA)

RADFET

- Measures absorbed dose by converting the threshold voltage shift (ΔVT) caused by radiation-induced charge into absorbed dose (D).
- When exposed to ionizing radiation, RADFET generates electrons and holes through ionization.
- Measures both dose and dose rate by monitoring threshold voltage shift and current.
- The relationship between threshold voltage shift and absorbed dose $\Delta V_T = S \cdot D^n$, with n representing linearity and S as sensitivity.
- Radiation-induced current (I) expressed as a function of dose rate (\dot{D}) $I = k \cdot \dot{D}$, with k as sensitivity coefficient and m linearity coefficient.

1. Sun Sensor

CubeSAT

Subsystems

- 2. Nadir Sensor
- 3. Magnetometer

4. Dosimeter

- Monitors the Sun's position and intensity relative to the satellite.
- Establishes a reference frame and maintains satellite orientation for accurate measurements and data collection during the mission.

1. Sun Sensor

2. Nadir Sensor

3. Magnetometer

4. Dosimeter

- Nadir sensor observes the Earth's surface directly beneath the satellite.
- Aids in determining the satellite's attitude relative to the Earth.
- Provides feedback for precise attitude control, ensuring alignment with observation targets and orbits.

1. Sun Sensor

2. Nadir Sensor

3. Magnetometer

4. Dosimeter

NSS Magnetometer

- Integrated into the ADCS to measure the Earth's magnetic field.
- It is integrated into the ADCS to measure the Earth's magnetic field.

1. Sun Sensor

- 2. Nadir Sensor
- 3. Magnetometer

4. Dosimeter

- Continuously measures radiation levels, detecting variations and fluctuations in radiation intensity.
- Aligns pointing direction to desired radiation patch.
- This feedback from the dosimeter allows the satellite's onboard systems to make necessary adjustments to its orientation and pointing angle

Considered actuators for control operation:

Reaction wheels (Planned to be designed and built in the lab)

Magneto torquers (Planned to be designed and built in the lab)

Communication subsystem

Data volume: 200 Mb/rev. *Data volume budget for MagIS:* per orbit = 6.2~7 Mb and in 1 day = 81 Mb

Communications

Downlink Telemetry Budget:

Parameter:	Value:	Units:	Comments:
Spacecraft:			
Spacecraft Transmitter Power Output:	0.8	watts	"Transmitter power"
In dBW:	-1.2	dBW	Transmitter power expressed in dB above one watt
In dBm:	28.8	dBm	Transmitter power expressed in dB above one milliwatt
Spacecraft Total Transmission Line Losses:	3.0	dB	This value is transferred from "Transmitters">Ltl
Spacecraft Antenna Gain:	6.5	dBi	"Antenna Gain"> Ga
Spacecraft EIRP:	2.3	dBW	Spacecraft Effective Isotropic Radiated Power (EIRP) [EIRP=Pt x Ltl x Ga]
Downlink Path:			
frequency	2050.0	MHz	
Spacecraft Antenna Pointing Loss:	0.6	dB	"Antenna Pointing Losses"
Path Loss:	160.0	dB	Lp = 22 + 20LOG(D/ λ);
Atmospheric Loss:	2.1	dB	
Ionospheric Loss:	0.4	dB	
Rain Loss:	0.0	dB	This is the signal level received at the Earth in the vacinity of the ground static
Isotropic Signal Level at Ground Station:	-160.8	dBW	Pr= EIRP-pointng loss-pathlosses-all other loss
Ground Station (EbNo Method):			
Eb/No Method			
Ground Station Antenna Pointing Loss:	2	.0 dB	
Ground Station Antenna Gain:	38	.8 dBi	"Antenna Gain"
Ground Station Total Transmission Line Losses:	3	.0 dB	
Ground Station Effective Noise Temperature:	50	DO K	
Ground Station Figure of Merrit (G/T):	8	.8 dB/K	G/T = Ga-Ltl-10log(Ts).
G.S. Signal-to-Noise Power Density (S/No):	74.6	dBHz	Boltzman's Constant: -228.6 dBW/K/Hz
System Desired Data Rate:	500000	bps	This is the data rate.
In dBHz:	57.0	dBHz	This is simply = 10log(R); R= data rate
Telemetry System Eb/No for the Downlink:	17.6	dB	
Demodulation Method Seleted:	GMSK		Modulation-Demodulation
System Allowed or Specified Bit-Error-Bate	1 0E-05		The selected value is transferred from the "Modulation-Demodulation
	1.02 00		
Fb/No Threshold:	9.6	dB	This is the result of the "Modulation-Demodulation"
	0.0		
System Link Margin:	8.0	dB	

Uplink Command Budget:

0 340 0 0						
		Parameter:	Value:	Units:	Comments:	
Subsystems		Ground Station:				
J		Ground Station Transmitter Power Output:		10.0 watts	"Transmitter power"	
		In dBW:	10.0	dBW	Transmitter power expressed in dB above one watt	
		In dBm:	40.0	dBm	Transmitter power expressed in dB above one milliwatt	
		Ground Stn. Total Transmission Line Losses:		3.6 dB	This value is transferred from "Transmitters">Ltl	
		Antenna Gain:		38.0 dBi	"Antenna Gain"> Ga	
		Ground Station EIRP:		44.4 dBW	Ground Station Effective Isotropic Radiated Power (EIRP) [EIRP=Pt x Ltl x Ga]	
		Uplink Path:				
		frequency	2	250.0 MHz		
		Ground Station Antenna Pointing Loss:		4.0 dB	"Antenna Pointing Losses"	
		Gnd-to-S/C Antenna Polarization Losses:		0.1 dB		
		Path Loss:		161.8 dB	$Lp = 22 + 20LOG(D/\lambda)$	
		Atmospheric Losses:		2.1 dB		
		Ionospheric Losses:		0.7 dB	This is the signal level received in space in the vacinity of the spacecraft using an om	nidirectional antenna>
		Isotropic Signal Level at Spacecraft:	-	124.3 dBW	Pr= EIRP-pointng loss-pathlosses-all other loss	
Communi	antiana	Spacecraft (Fb/No Method):				
Commun	cations	Eb/No Method				
	1)	Spacecraft Antenna Pointing Loss:		0.6 dB	"Antenna Pointing Losses"	
(CONIC	1.)	Spacecraft Antenna Gain:		6.5 dBi	"Antenna Gain"	
(Spacecraft Total Transmission Line Losses:		2.0 dB		
		Spacecraft Effective Noise Temperature:		300 K		
		Spacecraft Figure of Merrit (G/T):		-20.3 dB/K	G/T = Ga-L t-10log(T ₅).	
		S/C Signal-to-Noise Power Density (S/No):	83.5	dBHz	Boltzman's Constant: -228.6 dBW/K/Hz	
		System Desired Data Rate:	100000	bps	This is the data rate.	
		In dBHz:	50.0	dBHz	This is simply = 10log(R); R= data rate	
		Command System Eb/No:	33.5	dB		
		Demodulation Method Seleted:	Non-Coherent FS	iK	Values selected from "Modulation-Demodulation	
		System Allowed or Specified Bit-Error-Rate	1.0E-05			
		Demodulator Implementation Loss:	1.0	dB]	
		Telemetry System Required Eb/No:	9.6	dB	The selected value is transferred from the "Modulation-Demodulation	
		Eb/No Threshold:	10.6	dB	This is the result of the "Modulation-Demodulation"-9.6+1(other losses)	4
		System Link Margin:	22.9	dB		

Communication subsystem

S Band Antenna: SSA01 – Wide Bandwidth S-Band Patch Antenna

Features:

- Flight heritage since 2020
- Wide bandwidth: 2025 to 2120 MHz and 2200 to 2300 MHz

Band Range:

o First range:

2025 to 2120MHz

o Second range:

2200 to 2300MHz

- 6.5 dB Gain typical
- 195 MHz total bandwidth

Mass: 40 g

- Dimensions: 96.5 x 69.7 x 4.8 mm
- Operating Temperature: -80 to +140°C
- Radiation Tolerance: 4 years minimum in LEO

o Vertical beam: 60 degrees ; Horizontal beam: 60 degrees

Communication subsystem

S Band Transceiver

This full-duplex low-power S-band Transceiver is designed by NanoAvionics' partner Satlab for TM & TC on micro- and nano-satellites

- Transmit frequency: 2200 to 2290 MHz
- Transmit bit rate: 100 to 500 kbps
- Transmit power: Adjustable 20 to 30 dBm
- Receive frequency: 2025 to 2110 MHz
- Receive bit rate: 100 kbps
- Receive sensitivity: -110 dBm
- Input voltage: 5 40 V
- Typical power consumption (5 V input, 25°C): Rx: 0.65 W Rx+Tx: 6.5 W (30 dBm Pout)

- Operating temperature:
- Rx: -40° C to $+85^{\circ}$ C
- Tx: -40° C to $+70^{\circ}$ C
- Dimensions: 93.0 x 87.2 x 17.0 mm
- Mass: 191 g

Command and Data Handling

CDH Components

Command and Data Handling

Delkin Devices MB32FQQFZ-42000-2 SD Card (radiation tolerant)

Data retention: 10 years

Write speed: 16MB/s

Read speed: 32MB/s

Technical Specifications:

Capacity: 16 GB

Form factor: SD

- Operating Temperature: -55°C to +125°C
- Storage Temperature: -55°C to +125°C

Vibration: 20G (20-2000Hz)

Shock: 50G, half-sine, 11ms

Altitude: 80,000 ft

EMI/RFI: MIL-STD-461F

Radiation: Total Dose >100Krad(Si) Power consumption: 2.7V - 3.6V

Command and Data Handling Subsystems

Actel RTAX-S FPGA

Radiation-tolerant field-programmable gate array (FPGA) designed and developed by Microsemi Corporation (now a part of Microchip Technology Inc) to withstand high levels of radiation exposure in space and other harsh environments.

CubeSAT

Command and Data Handling

Technical Specifications:

Logic resources: RTAX2000S - up to 1.2 million gates RTAX1000S - up to 600K gates Clock resources: RTAX2000S - up to 120 RTAX1000S - up to 60 Memory resources: RTAX2000S - up to 96Mb RTAX1000S - up to 48Mb JTAG boundary scan: Yes

CubeSAT
SubsystemsCommand and Data Handling

Radiation Performance:

Radiation Tolerance: >100 krad (Si) total dose Single Event Upset (SEU) Immunity: <1 error per device per year SEU cross-section: <1e-9 errors/device-day Single Event Latchup (SEL) Immunity: >100 MeV/mg/cm2 Operating Temperature: -55°C to +125°C Packaging: Ceramic or plastic packaging Power supply: 3.3V Power Dissipation: 3.3V, 2.5W maximum

Command and Data Handling

Processor core	Single-board computer		
Memory	512 kB of Flash memory 128MB SDRAM; 256KB SUROM		
Speed	110 MHz to 133 MHz		
Clock, reset and supply management	3.3 V I/O, 2.5 V core supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz		
Power	5 W at 133 MHz		
Radiation-hardness	Total dose: 200 Krad (Si) SEU: <1.6e-10 errors/bit-day		
Interfaces	Up to 20 communication interfaces – SPDIFRx – 4 × I2C interfaces (SMBus/PMBus) – 4 USARTs/2 UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control) – 4 SPIs (45 Mbits/s)– 2 × CAN (2.0B Active) – SDIO interface.		

Command and Data Handling

Operating temperature	Between -55°C and 155°C			
Programming interface	JTAG connector or USB2.0 port (in system programming)			
Bus Size	64-bits			
Transistors	10.4-million			
Other peripherals	2 X TWI (I ² C) 1 X SPI 8 channel 12-bit ADC and 8 channel 10-bit ADC 1 x Temperature sensor (I ² C connected) 1 x Backup battery 1 x UART 1 x USB SpaceWire Port			
	SpaceMIC – PARIDH			

Command and Data Handling

ADCS: Interface: 1xRS-485

EPS: Interface: 1xI2C, 1xUART

External Storage: Interface: 1xSPI

Communication: Interface: 1xRS-232 and 1xUART **Payload:**

I. MagEIS Interface: 100BASE-TX

II. Magnetometer Interface: 100BASE-TX

III. Geiger Counter Interface: 1xUSB Note: These can work only if Shielding and errorcorrection techniques perfectly used either we have a another Best option is SpaceWire that majorly Design for radiation environments.

Interfaces Requirement

Orbital Mechanics

Walker delta notation: [i: t/p/f] = [30: 4/2/1]Here, inclination $(i) = 30^{\circ}$ Total number of satellite (t) = 4Number of planes (p) = 2Phasing parameter (f) = 1

> Prevident A Prevident A Hint A Hint A Lepus

Paridhi - 1

ements		
AN	7600.00000000009	km
c	0.105263000000004	
C	29.99999999999999	deg
AN	270	deg
OP	269.9999999999998	deg
к	0	deg

Paridhi - 2

Paridhi - 3

Elements

ECC

INC

RAAN

AOP

TA

7600.00000000004	km
0.105263000000007	
29.999999999999998	deg
270	deg
270.000000000002	deg
180	deg

Paridhi - 4

Ele

SI

EC

IN R/

A

TA

Orbital Mechanics

1. Perigee at 400 kms: The perigee is set at 400 kms above Earth, always over the southern hemisphere, to increase the satellite's frequency of entry into the South Atlantic Anomaly (SAA) region.

2. Apogee at 2000 kms: The apogee is set at 2000 kms, taking the satellite into the inner Van Allen Belt, a high radiation region starting at about 1000 kms above Earth. This maximizes the satellite's interaction time with the belt, allowing for extensive data collection on the radiation environment.

3. 30 Degree Inclination: The orbit's inclination is set at 30 degrees, aligning with both the SAA region and a designated ground station.

Orbital Mechanics

Interaction with the Van Allen Belt (for 1 satellite)

Time period
$$T = \frac{2\pi}{\sqrt{\mu}} a^{3/2} = 6593.73 \text{ s} = 1.83 \text{ hr}$$

Number of orbits in a day = $13.1 \approx 13$ times

Interaction with the Van Allen belt (in SAA) for nearly 7 times with average interaction time 8.4 minutes.

Average interaction time with the SAA in a day = 58.74 minutes.

So the time spent by a satellite in the region having altitude more than 1000 km (inner Van Allen belt) is found to be 1.1225 hr in a single orbit.

So average interaction time in a day = 875.6 min = 14.6 hr.

Total interaction time with the belt = 875.6+58.74 = 934.34 *min* = 15.57 *hr.*

Orbital Mechanics

Interaction with the ground station:

Ground station (Latitude= 8.6262° and Longitude= 77.0339°) - nearly 8 times.

Average interaction in a day = 147.0884 minutes or 2.45 hr.

Lifetime:

At perigee height 400 km and eccentricity $0.1052 \approx 0.1$ the reduced life time is nearly 0.4.

Satellite mass (m) = 8.2 kg

Area (m2) = $0.3 \times 0.1 = 0.03$

Lifetime = 0.4*m/A = 109.33 years

Much stable orbit - atmosphere drag is very less.

King Hele graph

Project Schedule

NSS Magnetometer	15000\$	CDH board	Approximately 5000\$
CubeADCS	43500\$	MagIS	To be designed indegeniously
Transceiver	Approximately 15000\$	RPA	To be designed indegeniously
Antenna	Approximately 6000\$	RADFET	\$90–160 (differs with company)

