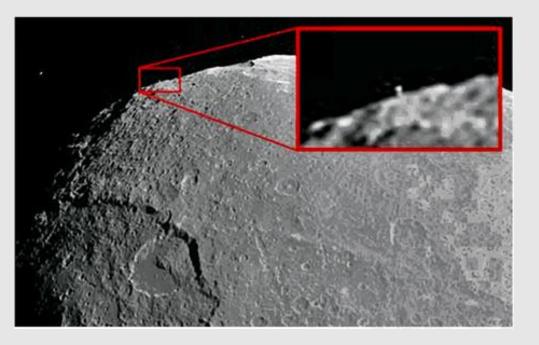


The 8° Mission Idea Contest For Multiple Nano-satellites


MOTHS Moon **O**bservation Through Hyperspectral **S**atellites

TRANSIENT LUNAR PHENOMENA

Short-lived changes in light, colour or appearance on the surface of the Moon observed from Earth. These phenomena range from foggy patches to permanent changes in the lunar landscape.

- For future human lunar missions, to choose an appropriate Moon landing site and possible position for lunar settlement, it is necessary to analyse the phenomena of TLP.
- To understand the colour-changing effect due to this phenomenon, it is important to study the correlation between outgassing and moonquakes.

MOTHS MISSION OBJECTIVES

Detection of colour changes on the surface of the Moon in optical wavelengths, to locate the main affected sites and to establish, if present, the correlation with outgassing of Argon, Radon and Polonium.

Investigate the **Argon outgassing** location as an indicator of seismic activity with the perspective of using this data as a basis to determine landing sites for future human missions.

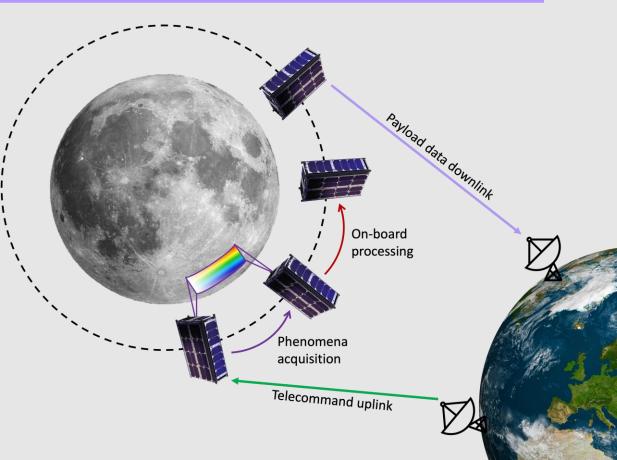
Verify if the TLP observations conducted from Earth's surface are affected by the atmosphere comparing, for the same event, the data acquired from lunar orbit and from Earth.

3

CONCEPT OF OPERATIONS

PHASE 1 – Acquisition Phase

Scientific data acquisition phase, which lasts for **2 minutes and 30 seconds** Total of **4 acquisitions**: 2 dark side & 2 visible part



on-board processing of the data

PHASE 2 – Download Phase

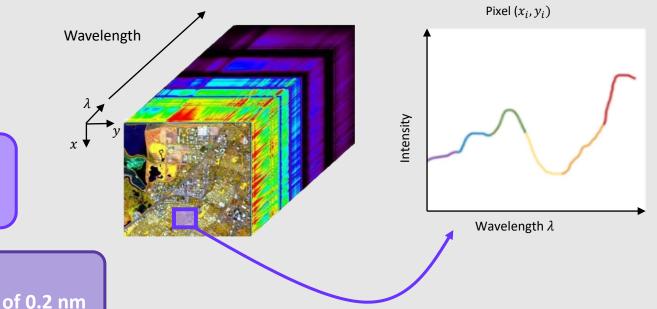
Downlink phase with a period of **1 hour and 30 minutes** per acquired data set.

To ensure TLPs detection the spatial resolution shall be below 20 m, considering that the phenomena has an extension between a few kilometers, up to 100 km.

To have a spectral characterization of the TLPs, the spectral band to be investigated shall be at least in the blue and red spectral region.

The GNSS receiver shall acquire, as a minimum set, the L1 GPS band and the E1 GALILEO band from Earth GNSS constellations.

PRIMARY PAYLOAD



Sensor Hyperscape100 from Simera Sense

Acquisition Mode Hyperspectral Push-broom Imager

Hyperscape Specifications				
GSD @ (750 km)	SWATH @ (750km)	Data Rate @(32 bands)		
7 m	27 km	0.4 GB/s		

Type of Spectral Data **Hypercube** which is constituted by a large number of contiguous and narrow spectral bands

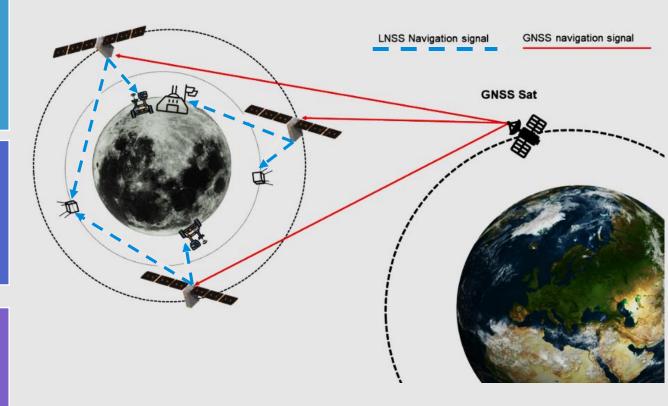
Data Processing Optical Images and spectral signatures for each wavelength of the emission and absorbance phenomena

Full Spectrum Characterization32 bands in a range of 442-884 nm with a spectral resolution of 0.2 nm

Alessia Di Giacomo

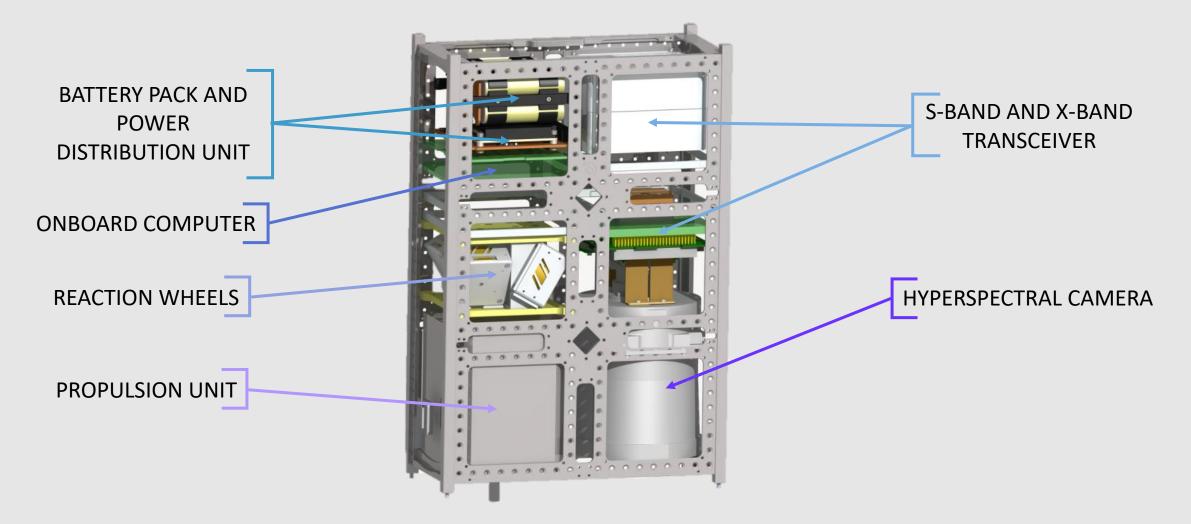
SECONDARY PAYLOAD

GNSS receiver SGR LIGO It will operate at the GPS L1 band (C/A code), GALILEO E1 band, and GLONASS G1 band

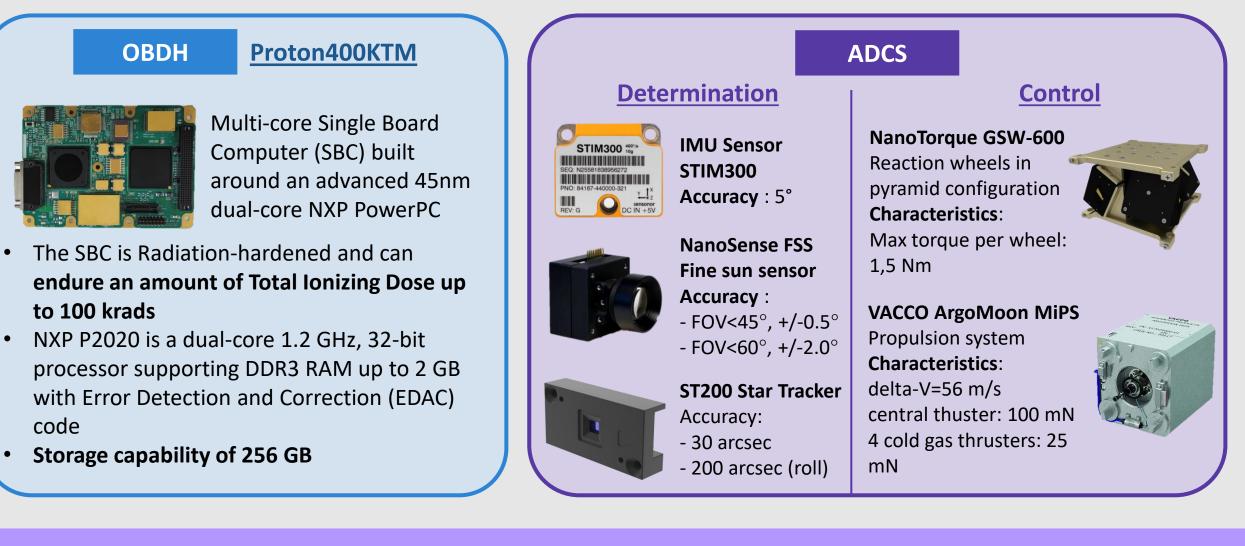

LNSS receiver

Support for future Lunar Navigation and Safety Systems (LNSS)

Patch antenna EXA GCA01

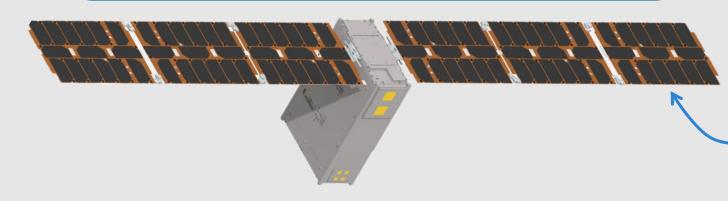

It has a wide-band operation over GPS, GLONASS, Galileo, BeiDou systems from 1561MHz to 1606MHz

SATELLITE DESIGN



OBDH & ADCS

BATTERIES


Nano Power BPX •Utilizes 18650 Li-Ion cells with a nominal cell capacity of 3000 mAh •86 Wh capacity

POWER DISTRIBUTION UNIT

NANO Power P60 System Composed o:

- P60 Dock motherboard
- Combination of an Array Conditioning Unit (ACU)
- Power Distribution Unit (PDU)

POWER BUDGET

Power [W]	Duty Cycle [min/orbit]	Power Consumption [Wh]			
+55.00	140	+ 128.333			
Total Request Components					
Fotal Request Components + 10% of margin					
Power Margin per Orbit					
DOD					
	[W] +55.00 quest Co t Compo margin Margin p	[W] [min/orbit] +55.00 140 quest Components t Components + 10% of margin Margin per Orbit			

SOLAR PANELS

NANO Power Tracking Solar 2030-3P

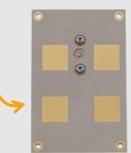
- Deployable Solar Panels
- SADA-50 gearbox mechanism
- 45 W per wing

TT&C DTE

Direct-to-Earth (DTE) communication – X band prioritized

GROUND STATION

Goldstone Deep Space Communications Complex (GDSCC) by NASA, California **Specifications**: 34m diameter with G = 68.2 dBi in downlink


Malindi station, Kenya **Specifications** 10m diameter with G/T = 17.7 dB/K (in clear sky conditions) and G = 55.5 dBi

Sapienza University of Rome, Italy (in progress)

INSTRUMENTATION

X-BAND AN	TENNA	
Operation frequency	8.025-8.400 GHz	
RF power input	<2W	
Gain	10 dBi	
Туре	Patch antenna	
Linear RF output power	Up to +33dBm	
X-BAND TRAN	ISCEIVER	
X band Tx operation	8.025-8.400 GHz	6
X band Rx operation	7.145-7.250 GHz	
Data rate Sat2Ground	2 kbps -200 Mbps	
Data rate Ground2Sat	56 kbps+	

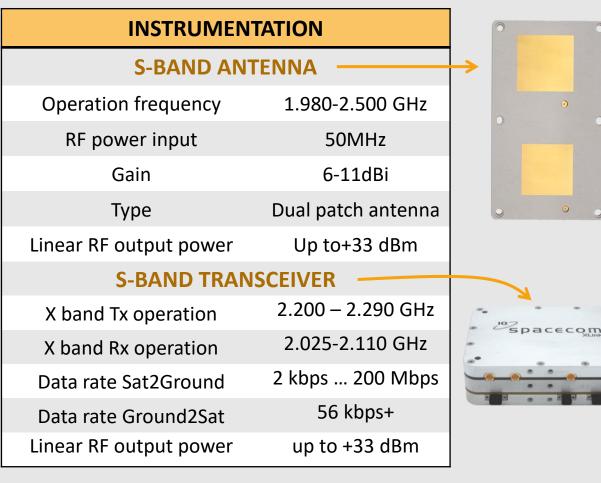
Carolina Ghini



TT&C - DTE

LINK BUDGET Feature Unit Downlink Uplink km 384400 384400 Distance 8400 8400 Frequency Hz Total losses dB 231,7 231,7 Eb/N0 dB 60,9 21,65 18 Eb/N0 required dB 18 Link Margin dB 3,6 42,9

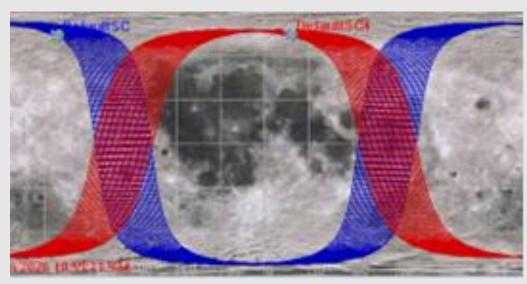
PASSAGE DATA DOWNLOAD


TT&C – ISL

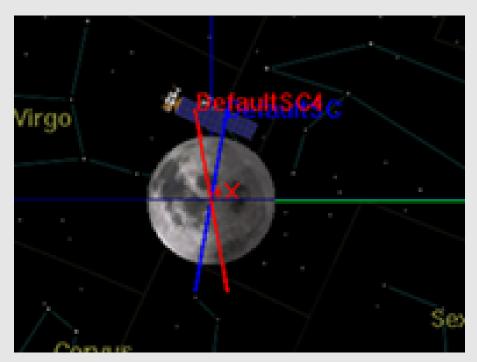
Inter-Satellite-Link (ISL) communication (S-Band)

Used in case of **failure of the DTE** communication possible with **Lunar Gateway** by NASA (launch in 2024) and **Lunar Pathfinder** by SSTL (launch in 2024)

LINK BUDGET					
Feature	Unit	Downlink	Uplink		
Distance	km	14000	14000		
Frequency	Hz	2200	2200		
Total losses	dB	189,3	189,3		
Eb/N0	dB	37,6	59,2		
Eb/N0 required	dB	18	18		
Link Margin	dB	19,6	41,2		



ORBIT/CONSTELLATION DESCRIPTION


Six 6U CubeSat \longrightarrow two different orbital planes spaced at 180° RAAN

e	a	i	ω	Ω	v
0	28474 km	80°	0°	0°	0°

ORBITAL PARAMETERS

Ground Track of the two planes

Orbit 3D view

Carolina Ghini

ORBIT/CONSTELLATION DESCRIPTION

CubeSats on the planes are spaced from the first of respectively 60° and 120° in True Anomaly to not overlie the sensors' swaths and consequently increase the total coverage

Simultaneous observations on the moon's far side and the side visible from Earth

Daily coverage percentage of 2.69% compared to the 0.45% of a single satellite

Complete lunar surface coverage in 37 days. Monthly revisit time enables mapping the areas most affected by the long-term phenomenon associated with outgassing

	Earth to Moon transfer	
 Electron launcher from Rocket Lab 		 Falcon 9 Block 5 by SpaceX

IMPLEMENTATION PLAN

The MOTHS team comprises 22 students, studying for Master's and Bachelor's degrees in Aerospace engineering

		202:	3		20	24			20	25	
IMPLEMENTATION PLAN	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Design phase											
Mission studies and design											
COTS Components analysis											
Development Phase											
COTS components procurement											
Ground Station service procurement											
Assembly and Integraation Phase											
Satellite BUS integration											
Satellite Payload integration											
Testing											
Sub-unit testing											
Vibration testing											
Thermal vacuum testing											
Launch											
Launch											
First in-orbit operation											

- For the first satellite, an Engineering Model (EM) and a Flight Model (FM) will be produced
- EM will be used for satellite testing and verification

COST BUDGET

Activity	Cost
Subsystem components	200000€
AIV and Testing*	0€
Launch	5 million €
Operation and disposal	1 million € per year
Payload	80000€
TOTAL (two years of operation)	~7 million €

*considering facility at the University and Student participation in AIV activities

- governmental endorsement should be considered
- including manpower for the AIV and testing activities almost 45% of the total costs
- resulting total of around 11 million euros

Michela Boscia

RISK ANALYSIS

Risk description	Risk level	Mitigation action				
Saturation of storage capacity due to	Low	Telecommand from Earth to reschedule the				
incorrect processing and compression		acquisition and downlink strategy				
of data						
Impossibility to send commands or	Low	S band antenna and transceiver have been				
receive data to/from the CubeSat in X		added in order to guarantee				
band		telecommunications				
Impossibility to desaturate the wheels	Low	The thruster will be tested fully tested on the				
due to thruster malfunctions		ground to guarantee its correct function				
		before the launch				
Development complexity of the	Medium	Finding space agencies collaboration for				
mission for a student team		technical support				
Insufficient funding for the	Medium	Finding governmental project or space				
development of the mission		agencies collaborations for funding				
		opportunities				

CONCLUSIONS

MOTHS mission (Moon Observation Through Hyperspectral Satellites) consists of a constellation of six 6U CubeSats distributed on two orbital planes

MOTHS payload consists of an **Hyperspectral camera** based on a CMOS sensor to detect Transient Lunar Phenomena and a **GNSS receiver** to support the future Lunar Navigation and Safety Systems (LNSS)

I MOTHS constellation allows to obtain a complete lunar surface coverage within 37 days

MOTH mission allows to understand lunar phenomena and lay the groundwork for lunar exploration and colonization

Thanks for your attention!

MOTHS TEAM

The 8° Mission Idea Contest For Multiple Nano-satellites

